A Note on a Family of Generalized Pascal Matrices Defined by Riordan Arrays

نویسنده

  • Paul Barry
چکیده

We study the properties of a parameterized family of generalized Pascal matrices, defined by Riordan arrays. In particular, we characterize the central elements of these lower triangular matrices, which are analogues of the central binomial coefficients. We then specialize to the value 2 of the parameter, and study the inverse of the matrix in question, and in particular we study the sequences given by the first column and row sums of the inverse matrix. Links to moments and orthogonal polynomials are examined, and Hankel transforms are calculated. We study the effect of the powers of the binomial matrix on the family. Finally we posit a conjecture concerning determinants related to the Christoffel-Darboux bivariate quotients defined by the polynomials whose coefficient arrays are given by the generalized Pascal matrices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Inverses of a Family of Pascal-Like Matrices Defined by Riordan Arrays

We study a number of characteristics of the inverses of the elements of a family of Pascal-like matrices that are defined by Riordan arrays. We give several forms of the bivariate generating function of these inverses, along with four different closedform expressions for the general element of the inverse. We study the row sums and the diagonal sums of the inverses, and the first column sequenc...

متن کامل

On a Family of Generalized Pascal Triangles Defined by Exponential Riordan Arrays

We introduce a family of number triangles defined by exponential Riordan arrays, which generalize Pascal’s triangle. We characterize the row sums and central coefficients of these triangles, and define and study a set of generalized Catalan numbers. We establish links to the Hermite, Laguerre and Bessel polynomials, as well as links to the Narayana and Lah numbers.

متن کامل

Notes on a Family of Riordan Arrays and Associated Integer Hankel Transforms

In this note we explore the properties of a simply defined family of Riordan arrays [9]. The inverses of these arrays are closely related to well-known Catalan-defined matrices. This motivates us to study the Hankel transforms [6] of the images of some well-known families of sequences under the inverse matrices. This follows a general principle which states that the Hankel transform of the imag...

متن کامل

A Study of Integer Sequences, Riordan Arrays, Pascal-like Arrays and Hankel Transforms

We study integer sequences and transforms that operate on them. Many of these transforms are defined by triangular arrays of integers, with a particular focus on Riordan arrays and Pascal-like arrays. In order to explore the structure of these transforms, use is made of methods coming from the theory of continued fractions, hypergeometric functions, orthogonal polynomials and most importantly f...

متن کامل

Riordan group approaches in matrix factorizations

In this paper, we consider an arbitrary binary polynomial sequence {A_n} and then give a lower triangular matrix representation of this sequence. As main result, we obtain a factorization of the innite generalized Pascal matrix in terms of this new matrix, using a Riordan group approach. Further some interesting results and applications are derived.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013